High Performance Visible & Infrared Sensors for Exoplanet Astronomy

James W. Beletic Teledyne Imaging Sensors

19 August 2010

Teledyne

Providing the best images of the Universe

Credits and sincere thanks for information provided by the following organizations

e2v technologies

Peter Pool Paul Jorden

MIT Lincoln Laboratory Barry Burke Vyshnavi Suntharalingham

Fairchild Imaging

Semiconductor Technology Associates

Dick Bredthauer

Sarnoff

James Janesick

Disclaimer

All information presented in this slide set is accurate according to the best knowledge of James Beletic. Any errors in content or presentation are solely due to the author, and not the persons listed above.

The Ideal Detector for High Resolution Spectroscopy

- Detect 100% of photons
- Each photon detected as a delta function
- Large number of pixels
- All pixels of equal size
- Record charge where detected (i.e. no blurring within detector)
- No noise other than photon noise
- Time tag for each photon
- Measure photon wavelength
- Measure photon polarization

- ✓ Up to 98% quantum efficiency
- \checkmark One electron for each photon

✓ 2K×2K, 2K×4K, 4K×4K, 10K×10K
Gigapixel mosaics possible

- ✓ Mostly true (watch for stitch boundaries)
- Charge diffusion, charge transfer inefficiency (CTI), electrical crosstalk
- ☑ Dark current, readout noise
- ☑ No framing detectors
- ☑ No defined by filter
- ☑ No defined by filter
- Plus numerous other "features": poorly operating pixels (cosmetics), hot pixels, charge traps, persistence (latency), etc.

Two main parts of an imaging detector Detector material & Solid state electronics

- Intensity image is generated by collecting photocharge generated in 3-D volume into 2-D array of pixels.
- Optical and IR focal plane arrays both collect charges via electric fields.
- In the z-direction, optical and IR use a p-n junction to "sweep" charge toward pixel collection nodes.

6 steps of optical / IR photon detection

Sensitvity

Crystals are excellent detectors of light

Structure of An Atom

- Simple model of atom
 - Protons (+) and neutrons in the nucleus with electrons orbiting

Silicon crystal lattice

- Electrons are trapped in the crystal lattice
 - by electric field of protons
- Light energy can free an electron from the grip of the protons, allowing the electron to roam about the crystal
 - creates an "electron-hole" pair.
- The photocharge can be collected and amplified, so that light is detected
- The light energy required to free an electron depends on the material.

The Astronomer's Periodic Table

							P	erio di	ic Tab	le							
1 Hydrogen											II	III	IV	V	VI		2 Heium
3 Lithium 8.9 11	4 Beryllum 9.0 12											5 Boron 10.8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 Carbon 12.0 14 Si	7 Nitrogen 14.0 15	8 0xgen 16.0 16	9 Fluorine 19.0	10 Neon 20.2 18
Fusca Sodium 23.0 19 K Potassium	Mignesium 9.0 20 Ca Calcium	21 Scandium	een 22 aanoo aanoo aa	23 Vanadium	24 Cr Chromium	25 Ny manaza	26 F G kon	27 Co Cobalt	28 Nui I Hicks I	29 Cul Copper	30 Zaro	Auminum 27.0 31 Gallium	Silicon 28.1 32 CE CO Germanium	a Phosphorus 34.0 33 As Arsenic	Sulfur 32.1 34 Selenium	Chlorine 35.5 35 Bromine	Arg on 40.0 36 Kr F Kingston
39.1 37 Rubidum 85.5 55	40.2 38 Strontum 87.6 56	45.0 39 ¥ Thrium 68.9	47.9 40 Zroonium 31.2 72	60.9 41 Nobium 92.9 73	52.0 42 Mal O Mohbdenum 95.9 74	54.9 43 Technetium 99 75	65.9 44 Rubenium 101.0 76	58.9 45 Rhodium 102.9 77	58.7 40 Pol Palladium 106.4 78	83.5 47 A Q Silver 107.9 79	85.4 48 Cd Cadmium 112.4 80	69.7 49 In hdium 114.8	72.6 50 50 Tin 118.7 82	74.9 51 Sb Antimony 121.8	79.0 52 Te Tellurium 127.6	79.9 63 bdine 128.9 85	83.8 54 X O Xanon 131.3 86
Caesium 132.0 87	Ba Barium 137.4 88 D A	89-103	Hathium 178.5 104	Tantalum 181.0 105	Tungsten 183.9 105	Re Rhenium 186.2 107 ERA	05 ^{0:mium} 190.2 108 Ho	ndum 192.2 109	Plainum 195.1 110	A 1 Gold 197.0	Hg Mercury 200.6	Thallium 204,4	Pb 443d 207.2	Bismuth 209.0	Polonium 210.0	At Attaine 210.0	Rn Radon 222.0
8 8 Francium 223.0	Facium 228.0		8 % 8 R* Benorden 201	Dubnium 252	Seabonjium 263	Bohrium 262	Hassium 265	Meitnerium 268	Detec	tor Fa	amilie	<u>es</u>			KI A [] A []	<u>Dar of Bilbar</u> Balizaetak Balize eath n	er Fey: wurb
Si - IV semiconductor HgCdTe - II-VI semiconductor InGaAs & InSb - III-V semiconductors						ransilán meta milomáics	<u>%</u> :										
	ce Ce bron	so Pr Pase com set	no NG Not	51 Prra Pometsium	se Sm anatum	03 E U E U	Gd Gd addinati	Tb Tb	os Dy Dyposum 152.5	er Ho Notae		CQ especial Truckyter 1113 C	70 Yb Bersen	71 L. L.	P	eni-metals	
39 Acc Actineum 132.9	90 Th The itum 232.0	91 Pa Protactinium 231.0	B2 U Uranium 238.0	93 Neptanium 237.0	94 Putosium 242.0	98 Ann Americum 243.0	98 Cm Curium 247 0	97 BK Berkelium 247.0	98 Cf Calibinium 251.0	99 Es Ensteinium 254.0	100 F 111 Fermium 253.0	101 MCI Adenda lei kurr 258.0	102 No Nebelium 254.0	103 L.F Laurencium 267.0		on anetak ob k gases	

Photon Detection

For an electron to be excited from the conduction band to the valence band

$$hv > E_g$$

h = Planck constant (6.6310⁻³⁴ Joule•sec) v = frequency of light (cycles/sec) = λ/c E_g = energy gap of material (electron-volts)

Material Name	Symbol	E _g (eV)	$λ_c$ (μm)
Silicon	Si	1.12	1.1
Indium Antimonide	InSb	0.23	5.5
Mer-Cad-Tel	HgCdTe	1.00 - 0.07	1.24 – 18

Tunable Wavelength: Valuable property of HgCdTe

Hg_{1-x}Cd_xTe Modify ratio of Mercury and Cadmium to "tune" the bandgap energy

Bandgap and Cutoff Wavelength as function of Cadmium Fraction (x)

Absorption Depth

The depth of detector material that absorbs 63.2% of the radiation (1-1/e) of the energy is absorbed

1	absorption depth(s)	63.2% of light absorbed
2		86.5%
3		95.0%
4		98.2%

For high QE, thickness of detector material should be \geq 3 absorption depths

Silicon is an indirect bandgap material and is a poor absorber of light as the photon energy approaches the bandgap energy. For an indirect bandgap material, both the laws of conservation of energy and momentum must be observed. To excite an electron from the valence band to the conduction band, silicon must simultaneously absorb a photon and a phonon that compensates for the missing momentum vector.

Absorption Depth of Light in Silicon

- For high QE in the near infrared, need very thick (up to 300 microns) silicon detector layer.
- For high QE in the ultraviolet, need to be able to capture photocharge created within 10 nm of the surface where light enters the detector.
- In addition, the index of refraction of silicon varies over wavelength a challenge for anti-reflection coatings.

Molecular Beam Epitaxy growth of very thin (~5 nm) thick backside Si layer with boron

QE variations

Boron implant / laser anneal (blue end), and fringing (red)

Photovoltaic Detector Potential Well

Silicon, HgCdTe and InSb are photovoltaic detectors. All use a pn-junction to generate E-field in the z-direction of each pixel. This electric field separates the electron-hole pairs generated by a photon.

Tradeoff: High Near-IR QE vs. Imager Resolution

High resolution in thick imagers => bias across sensor

MIT Lincoln Laboratory

• Thicker devices: higher near-infrared quantum efficiency

MIT Lincoln Laboratory

Available CCD performance

Dark Current Undesirable byproduct of light detecting materials

- The vibration of particles (includes crystal lattice phonons, electrons and holes) has energies described by the Maxwell-Boltzmann distribution. Above absolute zero, some vibration energies may be larger than the bandgap energy, and will cause electron transitions from valence to conduction band.
- Need to cool detectors to limit the flow of electrons due to temperature, i.e. the <u>dark</u> <u>current</u> that exists in the absence of light.
- The smaller the bandgap, the colder the required temperature to limit dark current below other noise sources (e.g. readout noise)

Dark Current of Silicon-based Detectors

In silicon, dark current usually dominated by surface defects

31

CCD Architecture

CCD Timing

CCD – 3 Phase Serial Register

MOSFET Principles

MOSFET = metal oxide semiconductor field effect transistor

Fluctuations in current flow produce "readout noise" Fluctuations in reset level on gate produces "reset noise"

MOSFET Amplifier Noise

Typical CCD Readout Noise (single CDS)

CCD Noise as function of amplifier & data rate

MIT Lincoln Laboratory

CCD Rain bucket analogy

World's Largest Monolithic CCDs

STA1600B 111 Mega pixel imager

- Full 6-inch wafer imager
- 10,560 × 10,560 pixels
- 9 micron pixel
- 111.5 Megapixels per frame
- 16 dual stage high speed outputs
- Backside thinned available
- Acquisition speeds up to 1 frame/sec

- 7.0-9.0 electrons noise @ 1.0 MHz
- 5.0 electrons @ 100 kHz
- Full well > 80,000 electrons non-MPP

CCD486 6-cm 4k x 4k

- 4096(H) x 4097(V) full frame CCD
- 15 μ m x 15 μ m pixels
- 61.44 mm x 61.44 mm image area
- 100% fill factor
- Front or back-illuminated
- Multi-Pinned Phase (MPP) mode
- Readout noise less than 4 e- at 50kHz
- 86 dB dynamic range
- 4 output ports
- 3-phase buried channel architecture
- 800 ke- summing well supports on-chip binning
- Volume production

Fairchild

Imaging

3K×8K Spectrograph CCD

© e2v technologies plc

Stability of HARPS due in part to mechanical stability of the CCD cryostat – it doesn't move

e2v has provided me with new information to state that they now have a new stepper for stitching with 100 nm precision, and this stitch issue should no longer be an effect.

HARPS CCD stitch boundary effect

Large-Format, Modular CCD Imagers

- Example: 3K x 3K OTCCD image sensor with 8µm x 8µm pixels
- Pixels with submicron dimensions require high-resolution (248-nm) patterning
 - Lithography field size is smaller than device size
- Design is fractured into functional blocks onto a multi-field reticle and precisely stitched back together on wafer

Completed 3K x 3K OTCCD Devices

- Large-area devices (26 mm x 50 mm) fabricated with low-voltage CCD technology
- Stitching methods achieve 35nm (3σ) precision with 8-µm pixel active devices
- Device test results expected in Nov 2010
- Process technology will be migrated to 200-mm substrates

MIT Lincoln Laboratory

MIT-LL-51 VS 1/21/10

Hybrid Imager Architecture

Tunable Wavelength: Valuable property of HgCdTe

Hg_{1-x}Cd_xTe Modify ratio of Mercury and Cadmium to "tune" the bandgap energy

Bandgap and Cutoff Wavelength as function of Cadmium Fraction (x)

Absorption Depth of HgCdTe

Rule of Thumb

Thickness of HgCdTe layer needs to be about equal to the cutoff wavelength

MBE growth of HgCdTe

- 1. Molecular Beam Epitaxy (MBE)
 - Enables very accurate deposition \Rightarrow "bandgap engineering"
 - Teledyne has 4 MBE machines for detector growth

More than 7500 MCT wafers grown to date

HgCdTe IR FPA Manufacturing Process

Public Domain Information - OSR Public Release Authority (08-S-0965).

HgCdTe Quantum Efficiency Measured by the European Southern Observatory

Data: Courtesy of ESO, KMOS project

Moon Mineralogy Mapper **Discovers Water on the Moon**

Moon water findings are a game-changer

Discovery calls into question 40 years of assumptions about lunar surface

shipment to India

Focal Plane Assembly

Teledyne Infrared FPA

- 640 x 480 pixels (27 µm pitch)
- Substrate-removed HgCdTe (0.4 to 3.0 µm)
- 650,000 e- full well, <100 e- noise
- 100 Hz frame rate (integrate while read)
- < 70 mW power dissipation
- · Package includes order sorting filter
- Total FPA mass: 58 grams

Chandrayaan-1 in the Polar Satellite Launch Vehicle

70 m/pixel @ 100 kr

Moon Mineralogy Mapper resolves visible and infrared to 10 nm spectral resolution, 70 m spatial resolution 100 km altitude lunar orbit

Completion of Chandrayaan-1 spacecraft integration Moon Mineralogy Mapper is white square at end of arrow

updated 12:38 p.m. PT, Thurs., Sept . 24, 2009 The discovery of widespread but small amounts water on the surface of the moon, announced Wednesday, stands as one of the most surprising findings in planetary science.

By Andrea Thompson SPACE

Dark Current of HgCdTe Detectors

6 steps of optical / IR photon detection

IR multiplexer pixel architecture

IR multiplexer pixel architecture

MOSFET Amplifier Noise

Example of Noise vs Number of Fowler Samples

Non-destructive readout enables reduction of noise from multiple samples

Architecture of simplest analog CMOS sensor

HxRG Family of Hybrid Imaging Sensors

- H: HAWAII: HgCdTe Astronomical Wide Area Infrared Imager
 - **<u>x</u>**: Number of 1024 (or 1K) pixel blocks in x and y-dimensions
 - **<u>R</u>**: <u>**R**</u>eference pixels
 - **<u>G</u>**: <u>**G**</u>uide window capability
 - → Substrate-removed HgCdTe for simultaneous visible & infrared observation
 - → Hybrid Visible Silicon Imager; Si-PIN (HyViSI)

Name	Format (# of Pixel)	Pixel Pitch (µm)	# of Outputs	NASA - TRL	Institutions, Observatories, and Programs Using HxRG Arrays
H1RG	1024×1024	18	1, 2, 16	9	Wide-field Infrared Survey Explorer (WISE) Orbiting Carbon Observatory (OCO) Development Programs in Astronomy & Earth Science
H2RG	2048×2048	18	1, 4, 32	6	James Webb Space Telescope (JWST) - NIRCam, NIRSpec, FGS Joint Dark Energy Mission (JDEM) Astronomy institutions and observatories: Calar Alto, Caltech, CFHT, ESO, ESTEC, Gemini, GSFC, IRTF, ISRO, IUCAA, JHU-APL, Keck, LBNL, LMU, MIT, MPIA, MPS, OCIW, Penn State, RIT, SALT, SAO, Subaru, TATA, U. Arizona, UCLA, UC Berkeley, U. Hawaii, U. Rochester, U. Toronto, U. Wisconsin Space surveillance applications
H4RG-10	4096×4096	10	1, 4, 16, 32, 64	6	Joint Milli-Arcsecond Pathfinder Survey (J-MAPS) Development Programs in Astronomy
H4RG-15	4096×4096	15	1, 4, 16, 32, 64	3	In Development, first on skytelescope test in 2011

HxRG Readout Integrated Circuit (ROIC) Architecture

H4RG-15 adds programmable column deselect and serial register read-back

H2RG Performance Confirmed by ESO

IELEDYNE IMAGING SENSORS A Teledyne Technologies Company
H2RG Standard Cutoff wavelengths

- The cutoff wavelength can be tuned to the scientific application
- To achieve economy of scale, Teledyne produces the H2RG with 3 cutoff wavelengths:
 - 1.75 microns
 - 2.5 microns
 - 5.3 microns

Large Visible Astronomy Focal Plane Array: H4RG-10

H4RG-10: 4096 x 4096, 10 μm Pixel Pitch FPA

- H4RG-10 Hybrid Visible Silicon Imager (HyViSI™) focal plane array is baseline precision astrometry space mission Joint Miliarcsecond Pathfinder Survey (J-MAPS) by the US Naval Observatory (USNO)
 - □ First use of CMOS for astrometry in space
 - □ 2×2 H4RG-10 mosaic 67 Megapixel Imager
- Focal planes delivered in 2008 and 2009 provide required performance at 193 K
- 2009 / 10 focus on operability improvement
 Operability > 99.9%
- Flight arrays will be delivered to the U.S. Naval Research Laboratory (NRL) in 2011

H4RG-10 HyViSI Prototype Focal Plane Array

Large Infrared Focal Plane Development: H4RG-15

- 4096×4096, 15 µm pixel pitch array
- Significantly reduce price / pixel and maintain established H2RG performance
- Four-side buttable (three-side close buttable) for large mosaics
- H4RG-15 adds:
 - Programmable column deselect and other advanced features for manufacturability
 Serial register read back

FLFDYNF

IMAGING SENSORS A Teledyne Technologies Company GL SCIENTIFIC

University of Hawaii Institute for Astronom

- \$6.2M grant received from the U.S. National Science Foundation (NSF)
- Project kicked off December 2009
- H4RG-15 readout circuit taped out 25 June 2010
- First prototype arrays are planned to ship to University of Hawaii in summer of 2011 for on-sky testing

The SIDECAR ASIC Complete Electronics on a Chip

SIDECAR: System for Image Digitization, Enhancement, Control And Retrieval

Teledyne Imaging Sensors

Beletic - High Performance Sensors for Exoplanet Astronomy - August 2010

SIDECAR ASIC Functionality

Teledyne Imaging Sensors

Beletic - High Performance Sensors for Exoplanet Astronomy - August 2010

SIDECAR ASIC Floorplan

SIDECAR ASIC Flight Package for JWST

- Ceramic board with ASIC die and decoupling caps
- Invar box with top and bottom lid
- Two 37-pin MDM connectors
 - FPE-to-ASIC connection
 - ASIC-to-SCA connection
- Qualified to NASA Technology Readiness Level 6 (TRL-6)
- <15 mW power when reading out of four ports in parallel, with 16 bit digitization at 100 kHz per port.

FPE side

James Webb Space Telescope 15 H2RG 2K×2K infrared arrays on board (63 million pixels)

NIRSpec (Near Infrared Spectrograph) <6 e- noise for 1000 sec exposure

FGS (Fine Guidance Sensors)

NIRCam (Near Infrared Camera)

Hubble Servicing Mission 4

Repair of the Advanced Camera for Surveys (ACS) Teledyne SIDECAR ASIC

HxRG – SIDECAR ASIC Package Development

One modular approach for all applications:

- Silicon Carbide (SiC) carrier for visible and substrate removed IR focal planes
- Rigid-flex cable with wirebond pads and with passives for flight or ground-based application

Image Data of H2RG + HgCdTe Detector

- Typical 2.5µm cutoff detector
- Images taken under weak flat field illumination (non-uniform)
- All images shown at the same scaling factor

(1st read after reset)

(2nd read after reset)

 $(2^{nd} - 1^{st} read)$ Removes all offset artifacts

Chart 83

Non-Ideal Sensor Attributes

Inter-Pixel Capacitance Persistence (latent image)

Interpixel Capacitance (IPC)

Single Pixel Resets

- C₀ node capacity of pixel
- Coupling capacitance C_c (x = C_c/C_0)
- Apparent capacitance for shot noise: $C=C_0 (5x+1)/(x+1)$
- $V_0 + 4V_i = V$
- Photometry conserved
- For uniform illumination no signal charge stored on C_c
- C_c reduces noise, but also sharpness and contrast

Residual Image (CDS Latency)

Example Test Measurements

Interconnect Operable Pixels Quantum Efficiency Single Correlated Double Sample (CDS) Readout Noise Readout Noise after multiple sampling Dark current Well depth

Interconnect at Room Temperature – nearly perfect

Operable Pixels

- To be operable, a pixel must pass all 3 criteria: quantum efficiency, dark current and single CDS readout noise
- Difference between the mean value and 90% operability level:
 - 3-4% for quantum efficiency
 - ~0.01 e-/pix/sec for dark current
 - 4-5 e- for readout noise

Quantum Efficiency

Single Correlated Double Sample (CDS) Read Noise

CDS from two subsequent frames, i.e. 10.6 sec.

Readout Noise after multiple sampling

Dark Current

Well Depth

Other things to consider with IR arrays

- Source follower (MOSFET) is simplest type of charge-tovoltage converter
- Capacitive Trans-Impedance Amplifier (CTIA), akin to an operational amplifier, has several good properties:
 - VERY linear
 - No inter-pixel capacitance (IPC)
 - Can have very large full well capacity (1–10 million electrons)
- 1.75 micron cutoff H2RG HgCdTe arrays get higher readout noise than 2.5 micron cutoff.
 - 2.5 micron: 12-14 e- single CDS (best is <10 e-)
 - 1.75 micron: 20-25 e- single CDS
- For H2RG, gap between individual sensor chip assemblies (SCAs) is 3 mm on 3-sides, 6 mm on bond pad side

Beletic – High Performance Sensors for Exoplanet Astronomy – August 2010

CIS2051 5.5M Pixel Image Sensor

- 6.5 µm² 5T pixel architecture
- 2560(H) x 2160(V) imaging array
- Dual gain 11-bit output channels
- 100 fps in rolling shutter readout
- 50 fps in global shutter readout
- Read noise < 2e- rms at 30 fps
- Dynamic range > 83 dB (15000:1)
- QE > 55% at 600 nm
- Dark current at 20°C 3 pA/cm²

Fairchild Imaging

Fairchild

Back-Illuminated CIS2051

- Dark current at 20°C < 8 pA/cm²

CIS2051 Read Noise Distribution (High gain 100MHz)

99

CMOS Wafers have been thinned from Tower, UMC and IBM. All behave much as expected. The only issue has been the epi starting thickness QE obtained in the red has not yet matched that available from CCDs. We're working with thicker, higher resistivity epi to improve red response

We have space qualified front illuminated CMOS sensors. The next step is to space qualify a backthinned CMOS sensor

- Part funded development : Phase 1
- The development sensor is 1/4 of the final 12 MPixel device
- Development sensor includes both 3T and 4T pixels (7µm pitch).
- Schematic layout is shown on the following slide
- Each 3 MPixel segment has 4 analogue outputs
 - (Analogue preferred by some customers: more flexible)

Timescale

- Tape-out was in March 2010
- Frontside illuminated Silicon available July 2010
- Backside illuminated silicon characterisation completed in Oct 2010

1500 x 2000 pixels. Different areas have 3T and 4T pixels, with optimisation for low noise or high signal handling,

We expect, for example: 90ke- FWC with 45e- read noise Or 70ke- FWC with 10e- read noise Or 15ke- FWC with 5e- read noise

In the PHASE 2 development, this scales up to a full size device

Large area Science imager

Phase 2

The 12MPixel device will be a composite of four 3 MPixel devices

Image Sensors for Planetary Exploration

3 Mega-pixel Wavefront Sensor for the E-ELT

e2V

- 1680×1680 pixels
- 24 µm square pixels
- Up to 1000 frames/sec (fps)
- <3e- total noise at 700 fps
- Fully digital sensor
- 40 (9-bit) ADCs per column (a total of 68,000 ADCs)

Sarnoff

CMOS STITCHING

105

Sarnoff

Mk (H) x Nk (V) x 10um IMAGERS

10k x 10k x 10µm COLOSSAL MINIMAL IMAGER CURRENTLY BEING DESIGNED.

Thank you for your attention

Teledyne Enabling humankind to understand the Universe and our place in it