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Absorption Cells:
A Superimposed Wavelength Reference
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Advantages of “Deconvolution” Technique:
eSame light path for star and wavelength reference
e Very stable wavelength reference



Our Atmosphere: A Big Absorption Cell

ON THE POSSIBILITY OF DETERMINING STELLAR Atmospheric Absorption Bands
RADIAL VELOCITIES TO o001 KM S-1 0.2 1 10

R. and R. Griffin ! L
(Received 1972 December 20) | ‘ 'd Scatterinc

SUMMARY

Dissimilarities in the illumination of spectrographs by star light and by
comparison sources, respectively, normally prevent the realization of radial-
velocity accuracies anywhere near those which high-resolution spectro-
graphs ought to provide. These difficulties can be entirely circumvented by
the use of telluric absorption lines as the stationary comparison source.
There seems to _be no reason, if the appropriate and possible precautions
enumerated in this paper are taken, why radial velocities accurate to 10 m s—1
should not be achieved for a restricted selection of stars. Existing spectro-
grams, taken for other purposes and without the benefit of any special pre-
cautions, already show an accuracy well in advance of normal standards.
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Telluric Lines: Friend or Foe?

Stable in Pressure,
Temperature, Velocity

Laboratory Line
Measurements

Wavelength Coverage

No Additional Extinction

Number of “Good” Lines

*Numbers for I,. Other Examples
include: HE, N.O,NH3 13CHg4
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v Theory or Solar Experiment: Griffin & Griffin (1973), Balthasar et al. (1982), Caccin et al. (1982),
Demming et al. (1987)

V Optical Measurement (O2): Smith (1982), Cochran(1998), Gray & Brown (2006), Figueira et al. (2010)
V Optical Measurement (H20): Snellen (2004)

v NIR Measurement (CH4, N-O, CQO»): Blake et al. (2007), Prato et al. (2008), Huélamo et al. (2008)
Seifahrt & Kaufl (2008), Figueira et al. (2009), Blake et al. (2010), Bean et al. (2010)



Why Use Telluric Lines Today?

e Require no modification of spectrograph

b b Free Wavelength

/ Reference!

e Measurements in new wavelength regimes:
*Deep Red and Near Infrared
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See Poster by
Sara Gettel




Planets Orbiting Low-mass Stars
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NIRSPEC Ultracool Dwart RV Survey

TARGETS: 65 L DWARFS, K<13.0, DEC>-30
600 INDIVIDUAL SPECTRA, S/N~75
55 OBJECTS WITH 2+ EPOCHS

TIME SPAN: 2004-2009

TEAM: C. BLAKE, D. CHARBONNEAU, R. WHITE
M. MARLEY, D. SAUMON

Includes NASA / NExSci Keck Time NIRSPEC Spectrum, K band, R~25,000

See talk by Tanner and posters by Deshpande and White about NIRSPEC RV work



Radial Velocities with Telluric CH4

(a) THEORETICAL TEMPLATE
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(b) TELLURIC SPECTRUM
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¢) NIRSPEC DATA
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(d) MODEL
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(e) RES]DUALS
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Modeling Process: Vsin(i) and RV



Fitting Process

DATA

RESIDUALS

¥> minimization using simplex method



Telluric Spectrum Near 2.3 pm

AM=1.0

WWWWWMWWWWWWM e

=1.5

jmv;o NWWWWW Il WW T (e
WWWWWWW W i WVM\W

2.290 2.295 2.300 2.305 2.310 2.315
Mum)

Flux + Offset

T
e,
o
>
~
S
@
a

14 1.6 . . 2.290 2.295 2.300 2.305 2.310 2.315
Airmass A (um)

Scale for Airmass: Residuals of 200 A star fits




NIRSPEC RV Precision
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Bright M star 50 m/s, photon limit? Theoretical Template vs. Empirical Template
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# Targets

Ultracool Dwarf Results
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Upper Limits on Giant Planet Occurrence



What Are The Fundamental Limits?

Precision

100m/s

10m/s ¢

Im/s ) ) )

Pressure

McDonald Observatory Barometric Pressure for the past month at a 2 hour Average
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Calculating Telluric Models

Line Parameters

Climatology
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Shift, Temperature Shift, Temperature,
Energy, Width from Pressure,
Theory and Experiment Composition
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Radiative Transfer

Transmission:

Line by Line:

Line Shape and Depth:



Cl1mate Model
e NASA Earth Global Reference Atmosphenc Model (GRAM)

* Semi-empirical model of atmosphere for date and location

e GRAM model is based on:

¢ Extensive observational data
¢ Models for long- and short-term perturbations
¢Includes model of boundary layer

e Predicts over 0 to 120 km altitude:

¢ Wind profiles and shear
¢ Chemical composition
¢ Pressure

¢ lemperature

White Sands, NM



Theoretical Telluric Spectrum
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Telluric Photon Limits

e Photon-limited Doppler Precision (suteretal. 1996 or ouchy et al. 2001):

eS/N=100 pixel at 500nm
20 nm chunks



Stellar Photon Limits

1.5

Wavel.ength (um)

e Photon-limited Doppler Precision:
eFixed | magnitude and integration time, Vsin(i) =3 km/s
eR=50,000, S/N=100 at 1 micron, 30 nm chunks
e Includes Telluric absorption in S/N of each chunk



Telluric Line RV Shifts

Telluric Lines are
Asymmetric!

Alt=6 km
VAN

Alt=5 km

VAN Winds: ARV<20m/s

m Intrinsic Asymmetry: ARV< 1 m/s

Frequency

Pressure Shifts: ARV<10m/s
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Line Asymmetric Voigt Profile
Shape Function




Atmospheric Pressure
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Pressure with Altitude

1o Variation in Pressure

¢ 1% Pressure Change is ARV=3m/s at 1 um
e Depends on Altitude and Zenith Angle ¢:



Atmospheric Winds
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1o Wind Region and Average E-W Wind Radial Wind Speed
Random pointings AM<1.2

Difference from yearly average for given
pointing



Altitude of Line Formation

H,0 0.9-1.0 um

10 15 20
Altitude of t=1 (km)

Histograms of altitudes at which lines
reach optical depth 1



Monte Carlo Simulations

100 night atmosphere models over 12 months
* Models for 1.2 km site in New Mexico
*10 random sight lines each night, AM<1.2

Telluric Regions

0.685-0.695um

Barycenter

1.59-1.62um
2.28-2.3um

V0 derived from zenith

20 30
Wavenumber

Approximation:
Weighted Average
of Lines in Region atmosphere

observation in average



Simulation Results
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RV residuals after correcting for zenith
angle and yearly-average wind profile



Best Telluric RV Results

Radial Velocities with CRIRES*

Pushing precision down to 5-10 m/s

P. Figueiral, F. Pepel, C. H. F. Melo?, N. C. Santos>, C. Lovis!, M. Mayorl, D. Queloz', A. Smette*, and S. Udlry1
A&A, 2010, 511, 55

Using CO; lines around 1.6 um
Simulations predict ~6 m/s

Evaluating the stability of atmospheric lines with HARPS*

P. Figueira, F. Pepe, C. Lovis, and M. Mayor

A&A, 2010, 515, 106

2 m/s using O, B and y bands

Simulations predict ~5 m/s



Future Work

e What site characteristics result in the most stable RVs?
* Incorporate realistic motions of water vapor
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Deep Red: Thick CCDs, many stellar lines
(FeH), many water lines

Transmission

e How best to incorporate real-time weather metrology
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* How best to make RV measurements using telluric lines
¢ We would like an “FTS spectrum” of our “gas cell”
¢ Chad Bender’s models are just what we need!




Conclusions

eSome 1980s technologies should not be brought back

eSome should: RV precision of 5 m/s or better has been
demonstrated across optical and NIR using telluric lines

e The atmosphere imposes fundamental limitations:
¢ Wind and pressure variations
¢ Expected to be less than 5 m/s with weather modeling

o Telluric lines as an RV reference are particularly appealing:
¢ As an alternative in certain spectral regions (deep red)
¢ When 5 m /s is interesting (late-M stars)



Earth’s Complex Atmosphere

P Dry Air Expressed in Volumes

® Nitrogen (N,) 78.1%
e Oxygen (0O,) 20.9%

e Argon (A) 0.9% l

| o Carbon dioxide (CO,) 0.035% |
i - @ Others 0.065% |
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