"Using a Gas Absorption Cell as a Radial Velocity Reference"

> Jeff Valenti (STScl) Jay Anderson (STScl)

Presented at "Astronomy of Exoplanets with Precise Radial Velocities" at Penn State University on Aug 18, 2010

Why a gas cell can be useful...

A gas cell imprints on each spectrum the behavior of optics and detector for the actual illumination conditions during that observation

Compensate for spectrograph instabilities. Data analysis is nontrivial.

Planets still lurking in 15 years of existing data from slit spectrographs.

Outline

Modeling observations

- Intrinsic stellar spectrum
- Iodine cell temperature
- Line spread function
- Residuals
- Results

Using a Gas Absorption Cell

Model calculation

- Determine wavelength scale of observation
- Shift intrinsic stellar spectrum by stellar radial velocity
- Multiply by gas cell transmission spectrum
- Convolve with local line spread function
- Determine normalization function to match observation

Free parameters for each observation

- Wavelength scale
- Stellar radial velocity
- Normalization function
- Line spread function

Wavelengths from Iodine Cell Absorption Lines

Velocity Shift of Intrinsic Stellar Sepctrum

Line Spread Function of Spectrograph

Constructed Model of Observation

Outline

- Modeling observations
- Intrinsic stellar spectrum
- Iodine cell temperature
- Line spread function
- Residuals
- Results

Three Ways to Determine the Intrinsic Spectrum

Observe directly with R ~ 300 000 spectrograph

Deconvolve using contemporaneous LSF

- Observe B stars with iodine to get an LSF
- Observe target star without iodine
- Deconvolve to get intrinsic stellar spectrum
- Assumes LSF is stable between observations

Deconvolve using simultaneous LSF

- Observe target star several/many times with iodine
- "Grand solution" gives LSF and intrinsic stellar spectrum
- Still working to understand and tune the algorithm

Deconvolution using Contemporaneous LSF

Plenty of Constraints for Grand Solution

New Code Stellar Spectrum Rings if Nodes Too Far Apart

Stellar Spectra Deconvolved Two Different Ways

Outline

- Modeling observations
 Intrinsic stellar spectrum
 Iodine cell temperature
 Line spread function
 Residuals
- Results

Transmission Spectrum of Keck Iodine Cell

- FTS spectra at three iodine cell temperatures
 - 50, 55, and 60 C
 - Interpolate to other temperatures as needed

Temperature Sensitivity of Iodine Lines

Iodine Cell Temperature vs. TEMPIOD1

Environment Can Affect Gas Cell Temperature

Outline

- Modeling observations
 Intrinsic stellar spectrum
 Iodine cell temperature
- Line spread function
- Residuals
- Results

LSF Changes For Each Exposure

Consecutive exposures

- 67 second cadence
- Raw LSF shift
 - 0.0039 pixels
 - 5.2 m/s
- After modeling I₂
 - 0.5 m/s
 - Factor of 10 better

LSF Variations for Consecutive Exposures

Spectrograph is stable on short time scales

Slit illumination may vary

- Misguiding
- Seeing changes
- Pupil illumination may vary
 - Misguiding with telescope out of focus
 - Particular concern for mosaic gratings
- Reduce effects with spectrograph design
 - Fiber feed
 - Precise guiding

Spline Nodes Describe Narrow LSF Core

Works Equally Well for Broader LSF Core

Broad LSF Wings Seen in Laser Exposures

Outline

- Modeling observations
- Intrinsic stellar spectrum
- Iodine cell temperature
- Line spread function
- Residuals
- Results

Fit Residuals for B Star Spectra

Fit Residuals for 992 B Star Spectra

New Code

Adjusted Fit Residuals for 992 B Stars

σ Dra without Residual Correction

σ Dra with Residual Correction and Uniform BC

Outline

- Modeling observations
- Intrinsic stellar spectrum
- Iodine cell temperature
- Line spread function
- Residuals
- Results

Radial Velocities for T Cet

Radial Velocities for HD 9407

Radial Velocities for HD 156668

Radial Velocities for GJ 412a

Main Points

Gas cell compensates for spectrograph instabilities

Need Instrinsic stellar spectrum

- Obtain directly with R ~ 300 000 spectrograph
- Deconvolve using contemporaneous LSF
- Deconvolve using simultaneous LSF ("grand solution")

Iodine cell temperature depends on environment

Describe LSF by spline curve

- Centroid at zero breaks degeneracy with wavelengths
- Need to accommodate extended wings seen in laser
- Diagnostics of systematic errors
 - Fit residuals of many stars in iodine reference frame
 - Radial velocity versus barycentric correction

Grand solution is starting to yield precise velocities