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UPF
The holy grail of exoplanet hunting –

Earth-mass  planets

 Earth-mass planets in the 

habitable zones of the 

nearest stars



UPFAstrophysically …unexplored

M dwarfs

K, G, F, A dwarfs



UPFAccessible habitable zones

Habitable zone 

inside 0.3 AU for M 

dwarfs

Impact of tidal 

locking unclear



UPFThe potential in the infrared

UPF



UPFUPF Design Baseline Concept

 Design inherited from Gemini PRVS

 Scaled down to 3.8m UK InfraRed Telescope

 Instrument similar to HARPS, UVES

 Cross dispersed échelle spectrograph

 White pupil collimator design

 Refractive camera

 No mechanisms (in main optical path)

 Fibre fed

 Fibre deployment system located on WFCAM cryostat

 Spectrograph and calibration unit located in 
UKIRT basement
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Instrument Concept
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Fibre deployment and acquisition

 Remove field lens tower (normal operation for 

WFCAM installation/removal)

 Cryostat remains in place 

 Fit second tower containing fibre pickoff & guiding 

assembly at f/9 focus
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UPFFibre Slicer Concept
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Spectrograph Optical Layout

 Input slit

 0.46 arcsec wide, 0.36 x 0.047mm effective size, f/5

 Focal reducer

 Convert from f/5 to f/13

 Single collimator

 Parabolic mirror, f=1100mm, 85mm collimated beam 

diameter

 Spectrum mirror

 Spectrally dispersed image at intermediate focal plane

 Echelle

 31.6 lines/mm, R4 (75° blaze angle)

 Cross disperser
 Reflective grating

 Camera

 f=450mm, f/5.3

 Detector
 2 x 2K2 HAWAII-2RG arrays

Input
Slit

Focal
Reducer

Echelle Grating

Cross
Disperser

Camera

Spectrum
Mirror

Detector

1400

Collimator 850
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UPF Spectral Format

Detector array footprint

2 x 2K2 HAWAII-2RG arrays

73.728 x 36.864mm



UPFAchieving metre per second precision

 Metre per second RV precision is equivalent to <0.001 of a pixel

 Large wavelength coverage in single exposure
 Hundreds of spectral features

 Highly stable instrument
 Guiding at fibre input
 Fibre scrambling 

 Fibre agitator – reduces modal noise in fibres

 No other mechanisms (fixed focus, single grating, single filter)
 Floor mounted instrument – gravitationally stable, so no flexure

 Under vacuum – removes effects of pressure and humidity 
variation

 Located in Coude room or instrument lab
 Less than 2K annual temperature variation

 Active temperature stabilisation of spectrograph optical bench
 ±0.05K over 24 hours

 Combination of these measures gives <0.1 pixel drift over 1hr 
integration



UPFAchieving metre per second precision

 Calibration needed to increase precision by 2 

orders of magnitude to achieve 0.001 pixels

 Simultaneous calibration via reference fibre –

tracks drift in wavelength scale over an integration

 Off line (daytime) calibration via gas cell –

absolute calibration of wavelength scale

 Off line measurement of spectral response 

function (PSF * fibre slit) – mitigates against small 

changes causing spurious centroid shifts



UPFReference fiducial in the NIR

• Use of a laser comb not currently within UPF budget.

• Use simultaneously exposed arcs (Th-Ar, Kr, Ne, Xe)

• UNe lamp promising – gives more lines than ThAr 3-3.5x 

improvement in Y band precision



UPFInstrument expectations



UPFM dwarf radial velocity planet searches 

Jenkins et al. 2009, ApJ, 704, 975

• How do rotation and starspot coverage limit precision?



UPFM dwarf starspot patterns

• Doppler Images of (near fully convective) M dwarfs show uniform spot 

coverage – 10 % coverage (Barnes et al 2001, 2004)‏

• TiO band analysis indicates spot coverage: 20 to 40% (O'Neal et al 2004)‏

• Solar activity levels are extrapolated to active stars (Solanki 1999)‏

• Generate line profiles at multiple rotn phases using a 3D stellar model

18%                    48%                   100%    
9% 30% 62%

Solar min (0.03%)   Solar max  (0.3%)             1.9%



UPFHow do spots impact RV curve?

• Photosphere/Spot (Tp/Ts) contrast variations

• Amplitude induced in V vs Y band

• Once Tp/Ts is sufficiently high, spots in V and Y

bands contribute negligible flux  little improvement

in NIR over optical



UPFRadial Velocity – Random Spots

1

2

Models 1 - 6
 Ts1 = 0.65 Tp

 Ts2 = Tp – 200K

 Solar min + max 

models lowest 

RV jitter ~ 1m/s

 Placing spots 
randomly 

decreases jitter! 
M6V

M4V

M2V



UPFPrecision as a function of rotation
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UPFPlanet Detection

 Simulate detection thresholds for low-mass planets 

orbiting centre of habitable zone

 Mstar = 0.1 (M6V), 0.2 (M4V) and 0.5 M


(M2V)

 Mplanet = 1, 2, 5, 10 & 20 M 

 10, 20, 50, 100, 200 & 500 epochs of observation (on 

consecutive nights)‏

 Radial Velocity Jitter: 

(1) starspots

(2) instrumental (1.5 –

6 ms-1 for Y band )

Lomb-Scargle periodogram 

analysis to detect periodicity 
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UPFPlanet Detection I – vsini = 2 kms-1

 Model 2 (Solar Max.) vsin i = 2 kms-1 (Meas. precsn. = 1.5 ms-1)

 20 - 30 epochs required to detect 5 M  planet orbiting 0.1 M


star 

 50 epochs required to detect 1 M  planet orbiting 0.1 M


star 

 500 epochs required to detect 1 M  planet orbiting 0.5 M


star 

(no significant variation for Tp/Ts contrast ratio as noise dominated by 

instrumental precision)

Model 2, vsini = 2 kms-1 (Low Contrast) Model 2, vsini = 2 kms-1 (High Contrast)



UPFPlanet Detection II – vsini = 5 kms-1

(Meas. precsn. = 2 ms-1)  Similar to 2 kms-1

(R=70k  4.3 kms-1 in Y-band)

Model 2, vsini = 5 kms-1 (Low Contrast) Model 2, vsini = 5 kms-1 (High Contrast)

Model 4, vsini = 5 kms-1 (Low Contrast) Model 4, vsini = 5 kms-1 (High Contrast)



UPFPlanet Detection III – vsini = 10 kms-1

(Meas. precsn. = 3 ms-1) Only 10 & 20 M  planets detected 

with 50 - 100 observations.

Spot contrast important

Planet detection 

infeasible

Model 3, vsini = 10 kms-1 (Low Contrast) Model 3, vsini = 10 kms-1 (High Contrast)

Model 6, vsini = 10 kms-1 (Low Contrast) Model 6, vsini = 10 kms-1 (High Contrast)



UPFPlanet Detection IV – vsini = 20 kms-1

(Meas. precsn. = 6 ms-1) 

Model 3, vsini = 20 kms-1 (Low Contrast) Model 3, vsini = 20 kms-1 (High Contrast)

Model 6, vsini = 20 kms-1 (Low Contrast) Model 6, vsini = 20 kms-1 (High Contrast)



UPFSummary - UPF

 ~1 ms-1 precision in NIR (simultaneous Y,J & H) 
to enable detection of Earth-mass planets in 
habitable zones of the closest stars

 Low-risk design inherited from PRVS (Gemini)

 Low-cost: £4.6m ($7.2m) (baseline cost) 

of which £1.5m ($2.4m) is hardware/travel



UPFSummary – M dwarf spot simulations

 With only several 10s of epochs detection of habitable 

zone Earth-like planets orbiting M dwarfs is possible

 Spot contrast important consideration for mid-late M 

dwarfs

 v sin i may be limiting factor if spot coverage low

 Removal of starspot jitter via line bisector analysis 

may be important for study of significant popn of 

moderat/fast rotators among mid-late M dwarfs

 Eccentric orbits: e = 0.5  2.5 x observations 

e = 0.9  5 x observations

(Barnes, Jeffers & Jones, MNRAS, submitted)


