UPF

UKIRT PLANET FINDER / M DWARF DETECTABILITY

John Barnes University of Hertfordshire, UK Hugh Jones UK ATC team

Astronomy of Exoplanets with Precise Radial Velocities PSU 17th August 2010

The holy grail of exoplanet hunting – Earth-mass planets

 Earth-mass planets in the habitable zones of the nearest stars

Astrophysically ... unexplored

Accessible habitable zones

Habitable zone inside 0.3 AU for M dwarfs

Impact of tidal locking unclear

UPF

The potential in the infrared

UPF Design Baseline Concept

- Design inherited from Gemini PRVS
- Scaled down to 3.8m UK InfraRed Telescope
- Instrument similar to HARPS, UVES
- Cross dispersed échelle spectrograph
 - White pupil collimator design
 - Refractive camera
 - No mechanisms (in main optical path)
- Fibre fed
 - Fibre deployment system located on WFCAM cryostat
- Spectrograph and calibration unit located in UKIRT basement

Instrument Concept

Fibre deployment and acquisition

ield Lens

Deployment

Remove field lens tower (normal operation for WFCAM installation/removal)
Cryostat remains in place
Fit second tower containing fibre pickoff & guiding assembly at f/9 focus

Fibre Slicer Concept

Spectrograph Optical Layout

- Input slit
 - 0.46 arcsec wide, 0.36 x 0.047mm effective size, f/5
- Focal reducer
 - Convert from f/5 to f/13
- Single collimator
 - Parabolic mirror, f=1100mm, 85mm collimated beam diameter
- Spectrum mirror
 - Spectrally dispersed image at intermediate focal plane

- Echelle
 - 31.6 lines/mm, R4 (75° blaze angle)
- Cross disperser
 - Reflective grating
- Camera
 - f=450mm, f/5.3
- Detector
 - 2 x 2K² HAWAII-2RG arrays ¹⁰

UPF Spectral Format

Detector array footprint 2 x 2K² HAWAII-2RG arrays 73.728 x 36.864mm

Achieving metre per second precision **UPF**

- Metre per second RV precision is equivalent to <0.001 of a pixel
- Large wavelength coverage in single exposure
 - Hundreds of spectral features
- Highly stable instrument
 - Guiding at fibre input
 - Fibre scrambling
 - Fibre agitator reduces modal noise in fibres
 - No other mechanisms (fixed focus, single grating, single filter)
 - Floor mounted instrument gravitationally stable, so no flexure
 - Under vacuum removes effects of pressure and humidity variation
 - Located in Coude room or instrument lab
 - Less than 2K annual temperature variation
 - Active temperature stabilisation of spectrograph optical bench
 - ±0.05K over 24 hours
- Combination of these measures gives <0.1 pixel drift over 1hr integration

- Calibration needed to increase precision by 2 orders of magnitude to achieve 0.001 pixels
 - Simultaneous calibration via reference fibre tracks drift in wavelength scale over an integration
 - Off line (daytime) calibration via gas cell absolute calibration of wavelength scale
 - Off line measurement of spectral response function (PSF * fibre slit) – mitigates against small changes causing spurious centroid shifts

- Use of a laser comb not currently within UPF budget.
- Use simultaneously exposed arcs (Th-Ar, Kr, Ne, Xe)
- UNe lamp promising gives more lines than ThAr \rightarrow 3-3.5x

improvement in Y band precision

Error source	Contribution	Comment
Drift measurement with	< 0.2 m/s	~ 300 arc lines typically > 60 s
sim. arcs		
Wavelength calibration	< 0.1 m/s	> 1000 arc lines during daytime
		calibration
Instrument SRF	< 0.3 m/s	> 1000 arc lines during daytime
measurement		calibration
Photon-weighted centre	< 0.1 m/s	Median sky conditions (1m/s
of integration time		corresponds to 30s)
Opto-mechanical	< 0.3 m/s	< 0.1 pixel drift during an
stability		observation
Centring and guiding	< 0.3 m/s	Spatial scrambling of fibre and
		CCD guiding
Background subtraction	< 0.1 m/s	Stability of background, dark
		current, blas etc.
Total non-source noise	< 0.6 m/s	RMS
Source photon noise	0.8 m/s	m _y =10.5 M6 V (<i>v</i> sin <i>i</i> =5 km/s) at
		10 pc S/N=150 in 14 min
Source radial velocity	(0-20 m/s)	Sources will be selected for
jitter		minimum radial velocity jitter
Atmospheric noise	~0.5 m/s	
Total noise (1 σ)	1.1 m/s	For typical M6 V star at 10 pc (no
		radial velocity jitter)

M dwarf radial velocity planet searches

• How do rotation and starspot coverage limit precision?

Jenkins et al. 2009, ApJ, 704, 975

M dwarf starspot patterns

- Doppler Images of (near fully convective) M dwarfs show uniform spot coverage – 10 % coverage (Barnes et al 2001, 2004)
- TiO band analysis indicates spot coverage: 20 to 40% (O'Neal et al 2004)
- Solar activity levels are extrapolated to active stars (Solanki 1999)
- Generate line profiles at multiple rotⁿ phases using a 3D stellar model

How do spots impact RV curve?

• Photosphere/Spot (T_p/T_s) contrast variations

UP

• Amplitude induced in V vs Y band

Once T_p/T_s is sufficiently high, spots in V and Y bands contribute negligible flux → little improvement in NIR over optical

Radial Velocity – Random Spots

- T_{s1} = 0.65 T_p
- $T_{s2} = T_p 200K$
- Solar min + max models lowest RV jitter ~ 1m/s
- Placing spots randomly decreases jitter!

Precision as a function of rotation

Planet Detection

- Simulate detection thresholds for low-mass planets orbiting centre of habitable zone
- $M_{star} = 0.1 (M6V)$, 0.2 (M4V) and 0.5 M_{\odot} (M2V)
- M_{planet} = 1, 2, 5, 10 & 20 M $_{\oplus}$
- 10, 20, 50, 100, 200 & 500 epochs of observation (on consecutive nights)
 <sup>Planet 2 M_{Earth} orbiting, 0.2 M_{Sun} star (100 epochs planet with spot model 2 (vsini = 5 kms⁻¹), IP = 2
 </sup>
- Radial Velocity Jitter:
 - (1) starspots
 - (2) instrumental (1.5 -
 - 6 ms⁻¹ for Y band)
- Lomb-Scargle periodogram analysis to detect periodicity

Planet Detection I – vsini = 2 kms⁻¹

- Model 2 (Solar Max.) vsini = 2 kms⁻¹ (Meas. precsn. = 1.5 ms⁻¹)
- 20 30 epochs required to detect 5 M $_{\oplus}$ planet orbiting 0.1 M $_{\odot}$ star
- 50 epochs required to detect 1 M $_{\oplus}$ planet orbiting 0.1 M $_{\odot}$ star
- 500 epochs required to detect 1 M_⊕ planet orbiting 0.5 M_☉ star (no significant variation for T_p/T_s contrast ratio as noise dominated by instrumental precision)

Planet Detection II – vsini = 5 kms⁻¹

Planet Detection III – vsini = 10 kms⁻¹

Planet Detection IV – vsini = 20 kms⁻¹

- ~1 ms⁻¹ precision in NIR (simultaneous Y,J & H) to enable detection of Earth-mass planets in habitable zones of the closest stars
- Low-risk design inherited from PRVS (Gemini)
- Low-cost: £4.6m (\$7.2m) (baseline cost) of which £1.5m (\$2.4m) is hardware/travel

- Spot contrast important consideration for mid-late M dwarfs
- *v* sin *i* may be limiting factor if spot coverage low
- Removal of starspot jitter via line bisector analysis may be important for study of significant popⁿ of moderat/fast rotators among mid-late M dwarfs
- Eccentric orbits: $e = 0.5 \rightarrow 2.5 \times observations$ $e = 0.9 \rightarrow 5 \times observations$

(Barnes, Jeffers & Jones, MNRAS, submitted)