From HARPS to ESPRESSO

Pushing the limits further Francesco Pepe, Observatoire de Genève

Penn state 17/08/2010

Where is the limits ?

The HARPS RV machine

+ final quality 'real-time' data reduction

Data reduction facts: Keep on moving

Improvements since 2003:

- & Remove atmospheric effects
- & Improve barycentric correction
- & Correct ThAr lines catalog
- > Improve and stabilize wavelength calibration
- ¿ Correct for 'color' (continuum) variations and ADC errors
- & Correct for lamp aging
- & Remove background and contamination
- & Improve cross-correlation and masks
- > Integrate laser frequency combs and Fabry-Perots
- & Blaze function correction

and ... continuously debug SW!

Example: Blaze correction

- Echelle grating = variable diffraction efficiency along order
- Typically 50% less on the border of orders
- This introduces spectral lines deformations
- Should be removed by the calibration but :

Thorium calibration

Extreme stability

 $\Delta RV = 1 m/s$ $\Delta RV = 1 m/s$ ΔT =0.01 K Δλ=0.00001 Α $\Delta p=0.01 \text{ mBar}$ 15 nm 1/1000 pixel

Vacuum operation

Temperature control

Stability and repeatability

Absolute position on the CCD of a Th line over one month

Detector 'instabilities'

Marco Gullieuszik, ESO

The two main methods ...

Simultaneous reference

'HARPS-like'

No differential IP changes allowed
 Not suitable for slit spectrographs
 No losses, wide wavelength range
 IP modeling is POSSIBLE

Self reference

'HIRES-like'

No differential IP changes allowed
 Suitable for any/slit spectrographs
 Absorption, restricted wav. range
 REQUIRES 'de-convolution'

No change of instrumental profile (IP)

Differential illumination variation

Slit spectrograph

Fiber-fed spectrograph

The concept of double scrambling

Scramble stellar image
 Use telescope pupil as new entrance illumination

Fibers alone do not scramble enough

Octagonal Fiber

Near Field

Far Field

Scrambling in the near field

Octagonal fiber : Diameter : 70 microns Star size : 35 microns Circular fiber : Diameter : 70 microns Star size : 35 microns

The wavelength calibration

Thorium lamps issues

Improving the calibration

- Cover full spectral range
- High spectral resolution (again)
- Equally dense and unresolved lines
- No blends
- Knowledge of theoretical wavelengths
- Stability (repeatability) of 10^{-11} over > 20 years

Laser frequency comb

Better photons or resolution?

Fixed-delay Interferometer (Ge et al.)

Dispersed FT spectrograh (Hajian et al., 2005, Monnet)
Fourier Transform spectrograph (Maillard et al., 2009)

Multiplex 'DIS'advantage

Better photons or resolution?

Better photons or resolution?

Care about ... atmosphere

Assumptions:

3% telluric line or (10% error on model depth)

🕢 R = 100'000

6

3000 stellar lines, 30% average depth

-> 10 cm/s RV error with 1 year period, if one line affected

Recommendations

Remove 'generously' the spectral domains affected by telluric lines

Or model the atmosphere

Contamination by faint background sources

Bad seeing

Good seeing

Fiber entrance

Possible dispersion up to several 100 m/s

Large contamination by secondary spectrum Small contamination by secondary spectrum

Contamination by faint background sources

Steps towards ESPRESSO et al.

For precise RVs a lot of photons are required -> bigger telescopes and better efficiency. But sometimes efficiency is in competition with instrumental precision.

Improve instrumental precision by

- Proving stability, in particular of CCDs
- Reduce illumination effects (scrambling required)
- New calibration reference needed
- Understand and master effects by atmosphere, moon, and other contaminants
- ? Optimize observation strategy to reduce stellar noise effects
- Increase spectral resolution (stability, telluric lines, SNR)