Precise Radial Velocities, Penn State University, Aug 17 2010

HARPS: concepts, performances, and results

Christophe Lovis University of Geneva

& the HARPS team

Outline

- > The simultaneous reference technique
- HARPS instrumental performances
- > Some recent results on low-mass planets
- > High-precision spectroscopy
- > Long-term results on a quiet star

Instrumental challenges to astronomical high-precision « line position » measurements

- Slit illumination: 1/100 of the slit width <-> 30 m/s @ R = 100,000
- Variations in the index of refraction of air: 1 m/s <-> 0.01 K <-> 0.01 mbar
- Thermal and mechanical flexures in the spectrograph: ~10-100 m/s (temperature, gravity, setup changes)
- Wavelength calibration High line density, high repeatability/accuracy, good modeling/fitting
- Detector-related effects Pixel inhomogeneities, CTE effects, flat-fielding, etc.

« Simultaneous reference » philosophy: address individual effects and minimize them

Slit illumination

Guiding error: $0.5'' \rightarrow 2-3$ m/s for a HARPS-like spectrograph Fiber-fe

Fiber-fed spectrograph

Simultaneous ThAr reference

Assumption: science and reference beams follow almost the same path from the slit to the detector, and will thus experience the same internal drifts

Minimization of internal effects in the spectrograph

 $\Delta RV = 1 m/s$

Δλ=0.00001 A

15 nm

1/1000 pixel

 $\Delta RV = 1 m/s$

 ΔT =0.01 K

 $\Delta p=0.01 \text{ mbar}$

Vacuum operation

Temperature control

Extraction of the RV information

The HARPS instrument and the quest for low-mass planets

- Cross-dispersed echelle spectrograph
- Spectral range 3785-6915 Å
- R = 115,000
- Long-term precision < 1 m/s
- Observations ongoing since 2003

ESO-3.6m @ La Silla

Wavelength calibration

Intrinsic line shifts in ThAr lamps

- Lamp aging -> pressure shifts
- Avoid Argon!
- Global Ar-to-Th sensitivity ratio: ~8.3
- Zero point correction using measured Ar line positions!

Gliese 581: super-Earths close to the habitable zone ?

Gl 581 b	Gl 581 c	Gl 581 d
P = 5.37 days	P = 12.9 days	P = 66.8 days
K = 12.5 m s ⁻¹	K = 3.24 m s ⁻¹	K = 2.63 m s⁻¹
m sin(i) = 15.7 M_{\oplus}	m sin(i) = 5.36 M_{\oplus}	m sin(i) = 7.1 M $_{\oplus}$

GI 581 e

P = 3.15 days $K = 1.85 \text{ m s}^{-1}$ $m \sin(i) = 1.94 \text{ M}_{\oplus}$

Bonfils et al. 2005 Udry et al. 2007 Mayor et al. 2009

The Planetary System in Gliese 581 (Artist's Impression) ESO Press Photo 22a/07 (25 April 2007)

ES 0

Global RV dispersion

- Peak at ~1.3 m/s
- Many stars ARE as quiet as this!
- All simulations of stellar noise should be compared to that
- Raw rms!
- Includes photon noise, instrumental noise, stellar noise and planets
- Many candidate planet-hosts have rms of 1-3 m/s
- This is still significantly better than other instruments...

CoRoT-7b: the first transiting super-Earth

CoRoT-7b

CoRoT-7c

days

M⊕

P = 0.85 day	P = 3.69
$R_p = 1.7 R_{\oplus}$	$R_p = ?$
$\dot{M_{p}} = 4.8 \dot{M_{\oplus}}$	$\dot{M_{p}} = 8.4$
$p = 5.6 \text{ g cm}^{-3}$	ρ = ?

CoRoT lightcurve, Léger et al. 2009

HARPS RVs, Queloz et al. 2009

GJ 1214 b: a super-Earth around a M4.5 dwarf

MEarth lightcurve

GJ 1214	GJ 1214 b
SpT = M4.5V	P = 1.58 day
V = 15 $M_* = 0.16 M_{\odot}$	$R_p = 2.68 R_{\oplus}$ $M_n = 6.55 M_a$
Teff = 3000 K	ρ = 1.9 g cm

Charbonneau et al. 2009

HARPS RVs

rms = 5.2 m/s despite V=15, SNR=9, 3.6m aperture, non-optimal correlation mask...

- High stability yields high-precision RVs, but also very good spectroscopy in general
- Benefits to any line position measurement, equivalent widths, line shapes
- Spectrophotometry and spectroscopic indicators very useful diagnostics in the context of planet searches
- Ca II H&K index, CCF FWHM and contrast, bisectors
- What is the behavior of solar-type stars at this level of precision?

Activity – rotation relation (Noyes et al. 1984, Mamajek & Hillenbrand 2008) gives $P_{rot} = 40.9 +/- 5.6 d$

Measured: either 35 or 46 d

