

Stellar Activity with Kepler

stellar variability to precision radial velocities

Lucianne M. Walkowicz UC Berkeley with Gibor Basri , Geoff Marcy, Debra Fischer, Andrew Howard and Howard Isaacson

Kepler offers a new window on stellar variability

- Uninterrupted photometry of unprecedented precision
- Target stars of wide range in activity level and T_{eff}

Kepler can both find planets and help us better understand the challenges we face

Effect of Starspots on Doppler work: RMS Doppler Velocity = $0.5 \Delta mag V_{eq} sin i$

STARSPOT JITTER IN PHOTOMETRY, ASTROMETRY AND RADIAL VELOCITY MEASUREMENTS

V.V. Makarov¹, C.A. Beichman¹, J.H. Catanzarite ², D.A. Fischer³, J. Lebreton¹, F. Malbet^{1,4}, M. Shao²

At a millimag of photometric variability, reasonably low V_{rot} : RMS ~ 0.001 mags * 2 km s⁻¹ ~ 2 ms⁻¹

Kepler offers a new opportunity to translate between photometry and RV

- Simultaneous photometry can help reconstruct RV signal
- Spot modeling and RV variations can both estimate spot parameters
- Quantify: spot filling factor, differential rotation, etc.

Range of variability in Kepler stars

Minimum range in lightcurves increases for fainter stars-rising "noise floor"

Smaller stellar signal for fainter stars combined with rising shot noise and fixed instrumental noise--*Minimum variability that can be detected is larger*

What is \triangle mag?

Kepler

21,000 stars

6,500 stars

43,000 stars

Entire sample: 46% of stars are more active than the active Sun, but only 18% are more than 2^{ce} as active.

Fraction of stars more active than the Sun

	T _{eff} > 6000 K	6000K > T _{eff} > 5500 K	5500 K> T _{eff} > 4500 K	T _{eff} < 4500 K
All stars	0.33	0.37	0.57	0.87
	21023	42832	33288	6522
Bright stars	0.41	0.31	0.46	0.84
	8747	6164	2613	369
Faint stars	0.33	0.38	0.57	0.88
	12276	36668	30675	6153

Boundary between "bright" and "faint" taken to be Kep Mag of 13.5

Q1 shows periodicity for short rotation periods*

* Longer periods with additional data

Basri, Walkowicz et al., submitted: arXiv:1008.1092

Basri, Walkowicz et al., submitted: arXiv:1008.1092

Basri, Walkowicz et al., submitted: arXiv:1008.1092

30

Differential rotation, spot evolution...

(lions and tigers and bears-- oh my!)

The Kepler Activity Project

- Select bright dwarfs with Kepler photometry
 - 12 FGKM dwarfs brighter than Kp of 8.5
- Observe regularly to obtain RVs with HIRES
- Compare spectroscopic activity tracers to

The Stellar Lineup

The Stellar Lineup

S-value

Mon Aug 9 17:51:39 PDT 2010

0.116

S-value

0.118

0.120 0.122

Mon Aug 9 17:51:52 PDT 2010

Summary

- Variability above solar is common, not exceptional
- Stellar activity introduces quasi-periodic signals at a variety of timescales
- Simultaneous RVs and photometry may help us better understand how activity affects planet detection
- Spot modeling also in progressstay tuned!

Fin

2