Effects of stellar activity on RV measurements

and a way to disentangle stellar activity and planetary signals

I. Boisse and F. Bouchy, G. Hébrard, X. Bonfils, N. Santos and S. Vauclair

STUDIES OF SPOTS SIMULATIONS

OBSERVATIONS & APPLICATIONS ON REAL DATA

EFFECTS ON OTHER CCF PARAMETERS

CONCLUSION & PERSPECTIVES

HOW SPOTS (AND PLAGES) CREATES RV FAKE VARIATIONS

CCF \approx mean line of the spectra

fitted with a Gaussian

spots or plages deform the CCF

INTRODUC

HOW SPOTS (AND PLAGES) CREATES RV

CCF \approx mean line of the spectra

fitted with a Gaussian

spots or plages deform the CCF

HOW SPOTS (AND PLAGES) CREATES RV FAKE VARIATIONS

- \ll CCF \approx mean line of the spectra
- fitted with a Gaussian
- spots or plages deform the CCF
 - induced variations of the measured RV

@ Donati

CONSEQUENCES

* Young and active stars were removed from RV surveys
RV follow-up (of transit detections) of active stars is difficult

But:

spots and plages exist on all stars, even low-activity stars

planet detection around young stars needed for planet formation theory

RV follow-up to establish the planetary nature of the transiting candidates and characterize the true mass

Diagnostics of stellar activity

line bisector variations spectroscopy

active lines CaII H&K, Ha, HeI, HB spectroscopy

stellar flux photometry

Queloz et al. A&A, 2001

SEVERAL ATTEMPTS TO REMOVE ACTIVE JITTER

HD219828 Melo et al. 2007 ---- remove anti-correlation BIS / RV

GJ674 Bonfils et al. 2007 \longrightarrow

Gl176 Forveille et al. 2008 \longrightarrow

HD189733 Boisse et al. 2009 ---> remove anti-correlation BIS / RV

CoRoT-7 Queloz et al. 2009 \longrightarrow

CoRoT-7 Hatzes et al. 2010 \longrightarrow

SEVERAL ATTEMPTS TO REMOVE ACTIVE JITTER

HD219828 Melo et al. 2007 ---- remove anti-correlation BIS / RV

GJ674 Bonfils et al. 2007 \longrightarrow adjust two Keplerians

Gl176 Forveille et al. 2008 \longrightarrow adjust two Keplerians

HD189733 Boisse et al. 2009 ---- remove anti-correlation BIS / RV

CoRoT-7 Queloz et al. 2009 \longrightarrow

CoRoT-7 Hatzes et al. 2010 \longrightarrow

SEVERAL ATTEMPTS TO REMOVE ACTIVE JITTER

HD219828 Melo et al. 2007 — remove anti-correlation BIS / RV

GJ674 Bonfils et al. 2007 \longrightarrow adjust two Keplerians

Gl176 Forveille et al. 2008 \longrightarrow adjust two Keplerians

HD189733 Boisse et al. 2009 ---> remove anti-correlation BIS / RV

CoRoT-7 Queloz et al. 2009 \longrightarrow harmonic decomposition of Prot

CoRoT-7 Hatzes et al. 2010 \longrightarrow Fourier analysis

ATTEMPTS TO REMOVE ACTIVE JITTER

Remove anti-correlation BIS / RV

STUDIES OF DARK SPOTS SIMULATIONS

Boisse et al. A&A, subm.

IMPACT OF STELLAR SPOTS

Amplitude of the RV depends on:

* vsini, spot size and star age Felline Saar & Donahue 1997 up to few hundred m/s point out convective inhomogeneities

* up to few tens m/s Cal line Hatzes 2002

Spectrograph resolution and spot temperature Visible spectra Desort et al. 2007

* Tool SOAP Bonfils & Santos, in prep.

School Schoo

Parameters:

 $v \sin i - R * - size$ and number of spots -- limb-darkening -inclination of the star with the line of sight *I* -- width of the typical spectral line of non-rotating star (vary with instrumental resolution and stellar *B-V*) -- no differential rotation

st Shape of active jitter: depends on stellar *I* and spot latitude δ

Perfect sampling + Gaussian noise

SPOT WITH AMPLITUDE VARIATIONS

SEVERAL SPOTS

FIT ACTIVE JITTER

Fit activity jitter with 3 sinusoids with periods fixed at Prot, Prot/2, Prot/3

Removed 90% of the active jitter

OBSERVATIONS AND APPLICATIONS ON REAL DATA

Boisse et al. A&A, subm.

TESTS ON REAL DATA HD189733

Active planet host star

Periodogram of the RV after removed planetary signal

TESTS ON REAL DATA GJ674

Active M-dwarf

* Two signals: planet and activity

Planetary parameters	Bonfils et al. (2007)	This paper			
P_P [days]	4.694 ± 0.007	4.694 ± 0.002			
K [m s ⁻¹]	8.70 ± 0.19	8.9 ± 0.3			
e	0.20 ± 0.02	0.19 ± 0.03			
ω [deg]	143 ± 6	159 ± 10			
$T_0 [JD]$	53780.09 ± 0.08	53780.25 ± 0.12			
$m_2 \sin i^a [M_{\oplus}]$	11.09	11.39			
$\sigma_{(O-C)}{}^{b} [m s^{-1}]$	0.82	0.65			
reduced χ^2	2.57	1.36 ± 0.27			
assuming $M_{\star} = 0.35 M_{\odot}$ (Bonfils et al. 2007)					
$\sigma_{(O-C)}$ after the fit					

SAMPLING EFFECT

HD189733

TESTS ON REAL DATA COROT 7

* Transiting planet CoRoT-7b Léger et al. 2009

RV follow-up: masses and CoRoT-7c Queloz et al. 2009

Simultaneous fit of stellar activity and planetary parameters

Parameters					
P_P [days]	$P_{rot}=23$ (fixed)	$P_{rot}/2=11.5$ (fixed)	$P_{rot}/3=7.66667$ (fixed)	3.695 ± 0.02	0.8536 (fixed)
K [ms ⁻¹]	14.3 ± 0.8	3.7 ± 0.8	1.2 ± 0.2	6.1 ± 0.6	4.5 ± 0.7
e				0 (fixed)	0 (fixed)
T_0 [JD]				54899.2 ± 0.7	54899.761 (fixed)
mp [M⊕]				14.4 ± 1.5	6.4 ± 1.1
$\sigma_{(O-C)} [{ m ms^{-1}}]$		before the fit 10.	after the fit 3.1; reduced $\chi^2 = 2$.		

TESTS ON REAL DATA IOTAHOR

- % Young active GOV star
- Long-period exoplanet (320.1d)
- 8-nights asteroseismologic run with HARPS Vauclair et al. 2008
- % Stellar rotational period ≈ 8 days

TESTS ON REAL DATA IOTAHOR

TESTS ON REAL DATA IOTAHOR

Simulations with fake planets to check which planets are fitted with the active signal

** No planets with period < 2.5 days and K > 3 m/s

OTHER PARAMETERS

Boisse et al. A&A, subm.

ANTI-CORRELATION BIS / RV

ONE SPOT

TWO SPOTS

ANTI-CORRELATION BIS / RV

Remove anti-correlation BIS / RV

FWHM VARIATIONS

A better indicator than bisector ?

Bisector variations are compared to those of RV that may be affected by a planetary signal !!

FWHM VARIATIONS

A better indicator than bisector ?

Bisector variations are compared to those of RV that may be affected by a planetary signal !!

OTHER CCF PARAMETERS

BRIGHT PLAGES

Lower amplitude impact than spots Saar 2003, Meunier et al. 2010

Low-active stars are dominated by plages (Sun during its active phase), different from active stars Lockwood 2007

Shapes of all parameters are reversed

Anti-correlation BIS / RV and FWHM / Photometry remain indicators

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS & PERSPECTIVES

- RV variations due to activity present periodicities at Prot and its two first harmonics
- Three sinusoids fit removes 90% of the active jitter
- * Need to know the Prot of the star or data cover two Prot
- Explore the FWHM / Photometry anti-correlation

- Find another way to measure the deformation of the CCF ? Cameron et al. 2009, 2010
- Find another way to measure the RV ?