An Error Budget for Precise Radial Velocities from Keck-HIRES

Andrew W. Howard
Townes Fellow, UC Berkeley

California Planet Search Team:
Geoff Marcy, Debra Fischer, John Johnson, Jason Wright, Howard Isaacson, Julien Spronck, Jeff Valenti, Jay Anderson, Nikolai Piskunov, more!

ASTRO2010

ASTRO2010

Three primary science objectives for the next decade:

1. Search for the first stars, galaxies, and black holes
2. Seek nearby habitable planets.
3. Advance our understandings of the fundamental physics of the universe.

ASTRO2010

"This survey is recommending a program to explore the diversity and properties of planetary systems around other stars, and to prepare for the long-term goal of discovering and investigating nearby, habitable planets." - page 7-7
"Using existing large ground-based or new dedicated mid-size ground-based telescopes equipped with a new generation of highresolution spectrometers in the optical and near-infrared, a velocity goal of 10 to 20 centimeters per second is realistic." - page $7-8$

ASTRO2010

"This survey is recommending a program to explore the diversity and properties of planetary systems around other stars, and to prepare for the long-term goal of discovering and investigating nearby, habitable planets." - page 7-7
"Using existing large ground-based or new dedicated mid-size ground-based telescopes equipped with a new generation of highresolution spectrometers in the optical and near-infrared, a velocity goal of 10 to 20 centimeters per second is realistic." - page $7-8$

ASTRO2010

"This survey is recommending a program to explore the diversity and properties of planetary systems around other stars, and to prepare for the long-term goal of discovering and investigating nearby, habitable planets." - page 7-7
"Using existing large ground-based or new dedicated mid-size ground-based telescopes equipped with a new generation of highresolution spectrometers in the optical and near-infrared, a velocity goal of 10 to 20 centimeters per second is realistic." - page $7-8$

ASTRO2010

To prepare for direct imaging, "NASA and NSF should support an aggressive program of ground-based high-precision radial velocity surveys of nearby stars to identify potential candidates" - page 1-8

ASTRO2010

Top Ground-based Recommendations (Large Projects):

1. LSST
2. Mid-scale Innovations Projects - including "Develop RV surveys and spectrometers to determine the properties of extrasolar planets"
3. Giant Segmented Mirror Telescope (TMT or GMT)
4. ACTA (Cerenkov Telescope)

ASTRO2010

SIM-Lite could characterize 50 nearby planetary systems down to an Earth-mass

Rejected for 3 reasons:

1. Large cost (\$1.9B)
2. Time to launch (8.5 yr)
3. Target-finding for direct missions can be done partially by RV with "challenging but achievable precision below $10 \mathrm{~cm} / \mathrm{s}^{\prime \prime}$

SIM-Lite

ASTRO2010

PRV Workshop

Describe instrumental difficulties

\downarrow
Value

Keck/HIRES

Iodine Cell

Keck 1 Telescope

HIRES

Echelle Spectrum

范

 11
 -

RVs with Iodine

$I_{o b s}(\lambda)=k\left[T_{12}(\lambda) \cdot I_{s}(\lambda+\Delta \lambda)\right] \otimes P S F$

Pushing down to $K<2 \mathrm{~m} / \mathrm{s}$

Pushing down to $K<2 \mathrm{~m} / \mathrm{s}$

Star:
HD 156668 (K3V) distance $=24 \mathrm{pc}$
$\mathrm{V}=8.3$
$[\mathrm{Fe} / \mathrm{H}]=0.05$
quiet
Planet:
$M \sin i=4.15 \mathrm{ME}$
$P=4.6455 \mathrm{~d}$
$\mathrm{e}=0$ (fixed)

Pushing down to $K<2 \mathrm{~m} / \mathrm{s}$

Star:
HD 156668 (K3V) distance $=24 \mathrm{pc}$
$\mathrm{V}=8.3$
$[\mathrm{Fe} / \mathrm{H}]=0.05$
quiet
Planet:
$M \sin i=4.15 \mathrm{ME}$
$P=4.6455 \mathrm{~d}$
$\mathrm{e}=0$ (fixed)

HIRES and HARPS

HD 156668 b (HIRES)

GJ 581 e (HARPS)

HIRES and HARPS

HD 156668 b (HIRES)

GJ 581 e (HARPS)

HIRES and HARPS

HD 156668 b (HIRES)

GJ 581 e (HARPS)

Standard Stars

Standard Stars

The best standards have an RMS of $1.5-2.0 \mathrm{~m} / \mathrm{s}$.

Standard Stars

The best standards have an RMS of $1.5-2.0 \mathrm{~m} / \mathrm{s}$.

These are almost always late G / early K dwarfs.

Standard Stars

The best standards have an RMS of $1.5-2.0 \mathrm{~m} / \mathrm{s}$.

These are almost always late G / early K dwarfs.

We do not explicitly average over P-modes; $T_{\text {exp }} \sim 1-5 \mathrm{~min}$

Standard Stars

HIRES Velocity RMS

Velocity RMS

HIRES

GK stars in Eta-Earth Survey
Known planets removed

Figure 2. Histogram of radial-velocity rms for the stars in the high-precision HARPS subprogramme aiming at detecting very low-mass planets. Part of the 'large' rms observed in the tail of the distribution results from stellar activity or from still undetected planetary systems.

HARPS

Velocity RMS

HIRES

GK stars in Eta-Earth Survey
Known planets removed

Figure 2. Histogram of radial-velocity rms for the stars in the high-precision HARPS subprogramme aiming at detecting very low-mass planets. Part of the 'large' rms observed in the tail of the distribution results from stellar activity or from still undetected planetary systems.

HARPS

Challenge: Stability and Precision at $0.3-0.5 \mathrm{~m} / \mathrm{s}$

Sources of RV Errors

Instrumental

(and modeling)

Poisson
($0.5-1.0 \mathrm{~m} / \mathrm{s}$)

Astrophysical

Sources of RV Errors

Instrumental

(and modeling)

Poisson

$$
(0.5-1.0 \mathrm{~m} / \mathrm{s})
$$

Not Limiting

Sources of RV Errors

Instrumental
(and modeling)

Astrophysical

Poisson
($0.5-1.0 \mathrm{~m} / \mathrm{s}$)

Sources of RV Errors

Astrophysical

Instrumental
(and modeling)
see also talks by

Poisson
($0.5-1.0 \mathrm{~m} / \mathrm{s}$) Valenti, Spronck

HIRES RV Errors

- Guiding
- Zonal aberrations / vignetting
- Fibers (The Solution!)
- Scattered light - HIRES
- Sky subtraction for faint targets

HIRES RV Errors

- Guiding
- Zonal aberrations / vignetting
- Fibers (The Solution!)
- Scattered light - HIRES
- Sky subtraction for faint targets

Intentional Mis-guiding

Guide High

Guide Middle

Guide Low

Extreme mis-guiding $\rightarrow 4 \mathrm{~m} / \mathrm{s}$

Intentional Mis-guiding PSF Asymmetry

PSF shape changes with mis-guiding

PSFs: Order 7, Pixel 3500

Normal Guiding - PSF Variations

Normal Guiding - PSF Variations

Normal Guiding - PSF Variations

Normal Guiding - PSF Variations

HIRES RV Errors

- Guiding
- Zonal aberrations / vignetting
- Fibers (The Solution!)
- Scattered light - HIRES
- Sky subtraction for faint targets

Hartmann Mask Tests

Standard Collimator Mask

Vignetting

HIRES Vignetting

ThAr Spectra

Iodine Spectra

lodine: Compare hole to no-hole

$R \sim 150,000$
$R=60,000$

Vignetting \& Pupil Illumination

Intentional mis-guiding along spatial direction \rightarrow varying continuum

HIRES RV Errors Summary So Far:

HIRES PSF will vary due to two effects:

1. The non-uniformly imaged slit that is imaged on the CCD
2. The non-uniform pupil illumination of the imperfect HIRES optics by the knife-edge effect on the pupil when the telescope is not in perfect focus.

HIRES RV Errors

- Guiding
- Zonal aberrations / vignetting
- Fibers (The Solution!)
- Scattered light - HIRES
- Sky subtraction for faint targets

Lick Test Fiber Julien Spronck - Yale

Lick Test Fiber Julien Spronck - Yale

Fiber Input - Lick Mis-guiding Tests

PSF Stability: ~ 1.0 pixel $\rightarrow<0.01$ pixels

Image of Fiber output

Keck Fiber Scrambler

Keck Fiber Scrambler

Julien Spronck - Yale

See Julien Spronck's Talk on Wednesday

"Fiber Scrambling at Lick and Keck Observatory"

HIRES RV Errors

- Guiding
- Zonal aberrations / vignetting
- Fibers (The Solution!)
- Scattered light - HIRES
- Sky subtraction for faint targets

A-band $\left(\mathrm{O}_{2}\right)$ at 760 nm

Scattered Light $<70 / 4 \mathrm{e} 4=0.002$ Intrinsically Black? Probably No.

A-band $\left(\mathrm{O}_{2}\right)$ at 760 nm

Scattered Light $<70 / 4 \mathrm{e} 4=0.002$ Intrinsically Black? Probably No.

Scattered Light - Laser Tests

Scattered Light - Laser Tests

Entire Laser Profile on Log Scale

Entire Laser Profile on Log Scale

Entire Laser Profile on Log Scale

HIRES RV Errors

- Guiding
- Zonal aberrations / vignetting
- Fibers (The Solution!)
- Scattered light - HIRES
- Sky subtraction for faint targets

Sky Contamination - Faint Stars

Kepler-8, V=13.9 mag (45 min , full moon) 4 Echelle orders: Moonlight, Sky lines, Cosmic rays

Sky Contamination - Faint Stars

Kepler-8, V=13.9 mag (45 min , full moon) 4 Echelle orders: Moonlight, Sky lines, Cosmic rays

Sky Contamination - Faint Stars

Full Moon, Clear skies: Sky is ~3\% of 14 th mag star (3 arcsec long slit)

Sky Contamination - Faint Stars

Full Moon, Clear skies: Sky is ~3\% of 14 th mag star (3 arcsec long slit)

Sky Contamination - Faint Stars

Full Moon, Clear skies: Sky is ~3\% of 14 th mag star (3 arcsec long slit)

Sky Contamination - Faint Stars

Full Moon, Clear skies: Sky is ~3\% of 14 th mag star (3 arcsec long slit)

Sky subtraction

Subtract median sky value from each pixel in extraction region

Essential for $V \geq 10$ for $1 \mathrm{~m} / \mathrm{s}$

Summary: HIRES RV Errors

- Guiding
- Zonal aberrations / vignetting
- Fibers (The Solution!)
- Scattered light - HIRES
- Sky subtraction for faint targets

Questions?

