NATIONAL SCIENCE FOUNDATION

4201 Wilson Boulevard

Arlington, VA 22230

“Where discoveries begin”

 

Embargoed Until: 1 p.m. Eastern Time

Aug. 31, 2004

 

 

Discovery of the First Two Neptune-Class Planets

Outside our Solar System

The First Quadruple-Planetary System also Found

 

ARLINGTON, Va.—

 

A team of astronomers has announced their discovery of some of the smallest planets yet detected beyond our solar system: two new worlds that represent a new category of extra-solar planets, as well as significant and much-anticipated advance in the hunt for such objects.

 

Each of newly discovered planets is roughly comparable to the planet Neptune in our own solar system, says Geoffrey Marcy of the University of California, Berkeley, a veteran planet-hunter and a co-discoverer of this pair.

 

That’s still pretty big on a terrestrial scale, he says; Neptune has 17 times the mass of the Earth. But it’s tiny compared to the 120-plus extra-solar planets that have been discovered to date. Virtually all of those objects are considerably heftier than our own solar system’s heavyweights, Jupiter and Saturn, which have 318 times and 95 times the mass of the Earth, respectively.

 

In addition, says Marcy, these newly discovered Neptunes may well be the harbingers of many more (and smaller) things to come. Although lower-mass planets like these tend to be harder to detect than their higher-mass cousins, the statistics to date suggest that they occur more frequently. And if that’s the case, he says, then an obvious extrapolation suggests that we may soon be seeing many more Neptunes—and that Earth-sized planets, if we can ever detect them, may be downright abundant.

 

The members of the discovery team were supported jointly by the National Science Foundation (NSF) and the National Aeronautics and Space Administration (NASA). They publicly announced their findings at a NASA Science Update on August 31, 2004, and will publish their results this December as two separate papers, both already peer-reviewed,

in the Astrophysical Journal.

 

The detection of a third Neptune-sized extra-solar planet was announced by European astronomers a week earlier, on August 25, but was not peer-reviewed yet.

 

The first of the two new Neptunes was discovered by a team consisting of Paul Butler from the Carnegie Institution of Washington, Steven Vogt from the University of California’s Lick Observatory, Debra Fischer from San Francisco State University, and Marcy. They were following a detection strategy that Marcy and Butler helped pioneer more than a decade ago, and that has accounted for the majority of exoplanet detections so far. Instead of trying for an actual image—even the biggest exoplanet is much too faint and far away for that—they monitored a long list of candidate stars, looking for wobbles that might be caused by the gravitational tug of an orbiting planet. The wobbles would show up as subtle “Doppler shifts” in the starlight; by observing those shifts over a period of years, the astronomers could then infer the planet's approximate mass, orbital size and period.

 

In this case, the astronomers were using one of the twin Keck telescopes on Mauna Kea, Hawaii, to monitor 950 nearby stars, 150 of which were a type of cool, reddish, very low-mass star known as an "M dwarf." Now, M dwarf stars are tough targets for planet hunters, says Marcy. The galaxy is filled with them; indeed, they’re the most abundant type of star in the universe, and presumably have lots of planets. “But they’re hard because they’re so dim,” he says. “Only with the largest telescopes in the world”—for example, the Keck—“can you do the Doppler technique on them, and then only with the very nearest.”

 

The effort paid off in July 2003, when the astronomers noticed a periodic wobble in Gliese 436, an M dwarf star that lies about 33 light-years from Earth in the direction of the constellation of Leo. Another 12 months of data-taking confirmed the result: Gliese 436 has a Neptune-sized planet of at least 21 Earth masses that goes whipping around in its circular orbit once every 2.64 days. That corresponds to an orbital radius of roughly 4.5 million kilometers, or about 3 percent of Earth’s distance from the sun.

 

From our terrestrial perspective, this does make for a rather bizarre kind of solar system. Even Mercury, the closest planet to our sun, has an orbital period of 88 days and an orbital radius of 58 million kilometers—more than 12 times further out. And our own Neptune has an orbital period of 165 years and an orbital radius of 4.5 billion kilometers: a thousand times further out. Still, for reasons that no one really understands, such close-in giant planets seem to be the rule among the exo-solar systems discovered so far.

 

As for what this new planet is like, says Marcy, that is anybody’s guess. It could be a gas giant: a sphere of hydrogen and helium gas similar to Jupiter and Saturn. Or, with a mass near that of Neptune, it could be very much like Neptune: a thick envelope of hydrogen and helium gas surrounding a core of rock and ice. Or, being so close to its sun, it could be just like Mercury: a barren ball of rock and iron.

 

The second of the new Neptunes was found in orbit around 55 Cancri: a yellow, sun-like star that lies about 41 light-years from Earth in the direction of the constellation Cancer.

 

In 2002, the same team had already announced their discovery of three planets around 55 Cancri, based largely on observations made by Debra Fischer at Lick Observatory. But over time they found that their subsequent Doppler measurements were beginning to vary from the predicted values in a way that suggested a fourth planet. They accordingly sent all their accumulated observations to University of Texas astronomer Barbara McArthur, who has been organizing a major campaign to study the 55 Cancri system. Combining that dataset with another 100 Doppler measurements taken with the Hobby-Eberly Telescope in Texas, McArthur and her colleagues then confirmed the star does indeed have a fourth planet. It has 18 Earth masses, an orbital period of 2.81 days, and an orbital radius of just 3.8 percent that of Earth.

 

The composition of this Neptune is as mysterious as the first, says Marcy: it too could be gaseous, rock-ice, or rock and iron.

 

On the other hand, he says, astronomers will soon have many more examples to study: he and his colleagues alone are already preparing publications on another 20 exoplanets.

 

###

 

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion.  National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions.  Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.  

 

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews.  To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov.  In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.:  “subscribe nsfnews John Smith”)

 

Useful National Science Foundation Web Sites:

NSF Home Page:  http://www.nsf.gov

News Highlights: http://www.nsf.gov/od/lpa

Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm

Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm

Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm